L-Form Bacteria and their role in Antimicrobial Resistance Sylvia Tong

PI: Prof. Paul KS Chan and Prof. Zigui Chen

16th Dec 2021

CUHK, Department of Microbiology

Outline

Introduction

- L-form bacteria
- Urinary tract infections

Potential role of L-form switching in AMR

- Isolation of L-forms in rUTI patients
- Visualization of L-form bacteria
- L-form switching is reliant on antibiotic presence

Discussion

- Other bacterial pathogens with L-form mechanisms
- Reassessing routine antibiotics used for UTIs

Conclusions and future directions

L-Form Bacteria

- L-form/L-phase/cell wall-deficient
- Discovered in 1935 by Emmy Klieneberger-Nobel at the Lister Institute

L-Forms as a novel Antimicrobial Resistance mechanism

- Cell-wall components recognized by immune system
- Target for immune effectors
- Target for antibiotics

Article Open Access Published: 26 September 2019

Possible role of L-form switching in recurrent urinary tract infection

Katarzyna M. Mickiewicz 🖂, Yoshikazu Kawai, Lauren Drage, Margarida C. Gomes, Frances Davison, Robert Pickard,

Judith Hall, Serge Mostowy, Phillip D. Aldridge & Jeff Errington

Nature Communications 10, Article number: 4379 (2019) Cite this article

32k Accesses | 19 Citations | 1278 Altmetric | Metrics

Urinary tract infection (UTI)

- Infection in any part of urinary system
- Most common outpatient infection
- 11% prevalence
 - 20% in >65 women
- 40-60% women will have a UTI in their lifetimes
 - 25% have **rUTI**
- Annual cost of \$1.6 billion in US

Uropathogenic *Escherichia coli* (UPEC)

 Agents causing UTIs are commensal organisms

 50-80% UTIs cause by *E. coli*

6

(Flores-Mireles et al., 2015, Nat Rev Microbiol.)

L-Forms found in rUTI urine samples via phase contrast microscopy

 Fresh urine samples phase contrast microscopy

.

L-Forms found in rUTI patients via fluorescence *in situ* hybridisation (FISH)

fixed and stained
 DAPI and fluorescent
 DNA probe against
 bacterial 16S rRNA
 (BAC 16S)

E. coli switches between L-form and walled states

- *E. coli t*ime-lapse microscopy in presence of **phosphomycin**,
 - with and without osmoprotection

Osmoprotection + phosphomycin

No osmoprotection + phosphomycin

L-form *E. coli* reverts to walled states following phosphomycin removal

- 5 h time lapse
 - 40 min increments
- L-form *E. coli t*imelapse microscopy in removal of phosphomycin

Osmoprotection

L-form switching time-lapse

*E. coli t*ime-lapse microscopy in presence of phosphomycin.

*E. coli t*ime-lapse microscopy in absence of phosphomycin

• L-form switching is a clinically relevant phenomenon that may contribute to the recurrence of infection in rUTI patients

Can other bacteria become L-forms?

.

Infectious agent	Example on ability to switch to L-form
Klebsiella pneumoniae	Cross et al., Spheroplast-Mediated Carbapenem Tolerance in Gram-Negative Pathogens . Antimicrob Agents Chemother. 2019 Aug 23;63(9):e00756-19. doi: 10.1128/AAC.00756-19. PMID: 31285232; PMCID: PMC6709500.
Proteus mirabilis	Tölg et al., Dependence of induction of enterobacterial AmpC beta-lactamase on cell-wall peptidoglycan, as demonstrated in Proteus mirabilis and its wall-less protoplast L-form. J Gen Microbiol. 1993 Nov;139(11):2715-22. doi: 10.1099/00221287-139- 11-2715. PMID: 8277255.
Pseudomonas aeruginosa	White et al., Cell wall characteristics of Pseudomonas aeruginosa and its carbenicillin-induced L-form. Acta Biol Acad Sci Hung. 1978;29(1):67-74. PMID: 112813.
Enterococcus spp.	Kawai et al., Crucial role for central carbon metabolism in the bacterial L-form switch and killing by β-lactam antibiotics. Nat Microbiol. 2019 Oct;4(10):1716-1726. doi: 10.1038/s41564-019- 0497-3. Epub 2019 Jul 8. PMID: 31285586; PMCID: PMC6755032.

Can other bacteria become L-forms?

- Cross et al., **Spheroplast-Mediated Carbapenem Tolerance** in Gram-Negative Pathogens.
- Overnight cultures of isolates were subcultured into prewarmed BHI+ liquid medium containing 10 μg/ml meropenem

Klebsiella aerogenes WCM0001

Klebsiella pneumoniae WCM0001

(Cross et al., 2019, Antimicrob Agents Chemother.)

Antibiotics used for UTIs

	Antibiotic treatment	Target				
	Nitrofurantoin	Bacterial ribosomal proteins				
	Amoxicillin- clavulanic acid	Cell wall synthesis				
	Phosphomycin	Cell wall synthesis				
	Cefuroxime	Cell wall synthesis				
	Levofloxacin	DNA gyrase				
	Ciprofloxacin	DNA gyrase				
	Sulfamethoxazole -trimethoprim	Folic acid pathway				

First Line

Second Line

- resistance of UPEC to antimicrobial agent ranges from 14.6% to 60%
- Antibiotic sensitive bacteria could L-form switch and persist
 - Unable to be found by current routine testing

 Understanding the mechanism of L-form switching can inform clinician choice of treatment

(chp.gov.hk, "Guidance notes for uncomplicated cystitis")

Conclusions and future directions

L-forms provide a source of bacterial survivors during cell wall specific antibiotics

- Continue proliferating during treatment
- Revert to walled state

L-form switching may be an underappreciated mechanism of antibiotic tolerance in chronic infections

Further understanding of L-forms may inform clinicians on better choices of treatment

Further understanding of mechanisms of L-form switching may allow development of a rapid test

Thank you for listening. Any questions?

Supplementary slides

References

- 1. Allan, E.j., J. Jass, L.e. Phillips, J.w. Costerton, and H.m. Lappin-Scott. "A Novel Method for Differentiating L-Form Bacteria from Their Parental Form Using the Hucker Gram Staining Technique." Letters in Applied Microbiology 15, no. 5 (1992): 193–96. https://doi.org/10.1111/j.1472-765X.1992.tb00761.x.
- 2. "Bacterial L-Forms PubMed." Accessed December 10, 2021. <u>https://pubmed.ncbi.nlm.nih.gov/19426852/</u>.
- 3. Cross, Trevor, Brett Ransegnola, Jung-Ho Shin, Anna Weaver, Kathy Fauntleroy, Michael S. VanNieuwenhze, Lars F. Westblade, and Tobias Dörr. "Spheroplast-Mediated Carbapenem Tolerance in Gram-Negative Pathogens." *Antimicrobial Agents and Chemotherapy* 63, no. 9 (September 2019): e00756-19. https://doi.org/10.1128/AAC.00756-19.
- 4. Errington, Jeff, Katarzyna Mickiewicz, Yoshikazu Kawai, and Ling Juan Wu. "L-Form Bacteria, Chronic Diseases and the Origins of Life." *Philosophical Transactions of the Royal Society B: Biological Sciences* 371, no. 1707 (November 5, 2016): 20150494. <u>https://doi.org/10.1098/rstb.2015.0494</u>.
- 5. Fabijan, Aleksandra Petrovic, Muhammad Kamruzzaman, David Martinez-Martin, Carola Venturini, Katarzyna Mickiewicz, Neftali Flores-Rodriguez, Jeff Errington, and Jonathan R. Iredell. "L-Form Switching Confers Antibiotic, Phage and Stress Tolerance in Pathogenic Escherichia Coli," June 21, 2021. <u>https://doi.org/10.1101/2021.06.21.449206</u>.
- 6. Flores-Mireles, Ana L., Jennifer N. Walker, Michael Caparon, and Scott J. Hultgren. "Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options." *Nature Reviews. Microbiology* 13, no. 5 (May 2015): 269–84. <u>https://doi.org/10.1038/nrmicro3432</u>.
- 7. Glover, William A., Yanqin Yang, and Ying Zhang. "Insights into the Molecular Basis of L-Form Formation and Survival in Escherichia Coli." *PLOS ONE* 4, no. 10 (October 6, 2009): e7316. <u>https://doi.org/10.1371/journal.pone.0007316</u>.
- 8. Kawai, Yoshikazu, Romain Mercier, Ling Juan Wu, Patricia Domínguez-Cuevas, Taku Oshima, and Jeff Errington. "Cell Growth of Wall-Free L-Form Bacteria Is Limited by Oxidative Damage." *Current Biology* 25, no. 12 (June 15, 2015): 1613–18. <u>https://doi.org/10.1016/j.cub.2015.04.031</u>.
- 9. Kawai, Yoshikazu, Katarzyna Mickiewicz, and Jeff Errington. "Lysozyme Counteracts β-Lactam Antibiotics by Promoting the Emergence of L-Form Bacteria." *Cell* 172, no. 5 (February 22, 2018): 1038-1049.e10. https://doi.org/10.1016/j.cell.2018.01.021.
- 10. Mercier, Romain, Yoshikazu Kawai, and Jeff Errington. "Excess Membrane Synthesis Drives a Primitive Mode of Cell Proliferation." *Cell* 152, no. 5 (February 28, 2013): 997–1007. https://doi.org/10.1016/j.cell.2013.01.043.
- 11. Öztürk, Recep, and Ahmet Murt. "Epidemiology of Urological Infections: A Global Burden." *World Journal of Urology* 38, no. 11 (November 2020): 2669–79. https://doi.org/10.1007/s00345-019-03071-4.
- 12. Park, Ju Yi, Kyung Ok Ko, Jae Woo Lim, Eun Jeong Cheon, and Jung Min Yoon. "Increase in Aminotransferase Levels during Urinary Tract Infections in Children." *Pediatric Gastroenterology, Hepatology & Nutrition* 16, no. 2 (June 2013): 89–94. <u>https://doi.org/10.5223/pghn.2013.16.2.89</u>.
- 13. Jack Westin. "Presence Of Cell Wall In Bacteria Classification And Structure Of Prokaryotic Cells MCAT Content," March 7, 2020. <u>https://jackwestin.com/resources/mcat-content/classification-and-structure-of-prokaryotic-cells/presence-of-cell-wall-in-bacteria</u>.
- 14. Sihra, Néha, Anna Goodman, Rhana Zakri, Arun Sahai, and Sachin Malde. "Nonantibiotic Prevention and Management of Recurrent Urinary Tract Infection." *Nature Reviews* Urology 15, no. 12 (December 2018): 750–76. <u>https://doi.org/10.1038/s41585-018-0106-x</u>.
- 15. Society, Microbiology. "Investigating the Possible Role of L-Form Switching in Recurrent Urinary Tract Infections." Accessed November 26, 2021. <u>https://microbiologysociety.org/our-work/75th-anniversary-a-sustainable-future/antimicrobial-resistance-amr/antimicrobial-resistance-amr-case-studies/l-form-switching-in-urinary-tract-infections.html</u>.

Methods for identifying L-forms?

- Modified Gram stain
- Requires culturing with L-form media before fixing and staining
- L-forms are red due to counterstain

A novel method for differentiating L-form bacteria from their parental form using the Hucker Gram staining technique

E.J. ALLAN, J. JASS*, L.E. PHILLIPS*, J.W. COSTERTON† & H.M. LAPPIN-SCOTT* Department of Agriculture, University of Aberdeen, 581 King Street, Aberdeen, AB9 1UD, *Department of Biological Sciences, Hatherly Laboratories, University of Exeter, EX4 4PS, UK and †Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada

DST/10: received 3 June 1992 and accepted 15 June 1992

⁽Allan et al., 1992, *Letters in Applied Microbiolo*.)

- Glover et al., (2009) Insights into the Molecular Basis of L-Form Formation and Survival in Escherichia coli
- csB, ruvA, fur, and smpA that are essential in the formation or survival of L-form colonies
- Pathways involved:
 - Cell envelope stress
 - DNA repair
 - Iron homeostasis
 - Drug efflux/ABC transporters
 - Outer membrane biogenesis

Small colony size

Reduced colonies

Control L-form colonies

Group 1 mutants (24)

rcsC, rcsB, rcsF cpsB, wcaA, wcaF, wcal, wza, wzb, wzc, wzxC, gmd, galU, manA, smpA, yfgL, ruvA, recG, fur, yhdP, acrA, acrB, yrbC, mrcB

Group 2 mutants (18)

yjbG, dnaT, recB recC, efp, galE, wcaJ, priA, fes, dedD, zwf, ubiE, ubiF, lpxM, yraO, smpB, damX, ychM

Group 3 mutants (10)

wcaL, fcl, vacJ, yrbD, yrbE, rffD, ompA, recA, fis, cpxA

BW25113 parent

- L-form switching in *B. subtilis*
- Two point mutations are needed for Lform growth in *B. subtilis*
- 1. rodA -> induces L-form, unable to grow
 - Peptidoglycan glycosyltransferase RodA
 - cell wall elongation and the maintenance of the rod cell shape
- ispA -> prevent lysis of L-form during growth
 - catalyzes the formation farnesyl pyrophosphate
 - required for synthesis of the precursors for peptidoglycan (lipid II) and wall teichoic acid

Volume 152, Issue 5, 28 February 2013, Pages 997-1007

Article

Excess Membrane Synthesis Drives a Primitive Mode of Cell Proliferation

Romain Mercier $^{1,\,2}$, Yoshikazu Kawai $^{1,\,2}$, Jeff Errington 1 $\stackrel{\circ}{\sim}$ \boxtimes

+ Add to Mendeley 😪 Share 🗦 Cite

Volume 25, Issue 12, 15 June 2015, Pages 1613-1618

Report

Cell Growth of Wall-Free L-Form Bacteria Is Limited by Oxidative Damage

Yoshikazu Kawai ^{1, 4} $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Romain Mercier ^{1, 4}, Ling Juan Wu ¹, Patricia Domínguez-Cuevas ², Taku Oshima ³, Jeff Errington ¹ $\stackrel{\circ}{\sim}$ $\stackrel{\boxtimes}{\sim}$

In vivo model

 Transparent zebrafish larvae

- A-D: L-form *E. coli* injected *in vivo* with/without antb
 - L in antb
 - L->N without antb
- E-G: Injected with walled/L-form *E. coli* without antb
 - L->N switch *in vivo*
- Homogenise embryo and plated then counted colonies

Other ways in which L-forms can be generated naturally

- Bacterial Cells Evade Antibiotic Action of PenG by Interacting with Macrophages
- Interaction with lysozymes can induce L-form switching

(Kawai et al., 2018, Cell)

Other ways in which L-forms can be generated naturally

"L-form switching is a common response of pathogenic E. coli strains to cell wall targeting antibiotics and that the most commonly used lytic bacteriophages are ineffective against them in this state"

L-form switching confers antibiotic, phage and stress tolerance in pathogenic *Escherichia coli*

Aleksandra Petrovic Fabijan¹, Muhammad Kamruzzaman¹, David Martinez-Martin^{2,3}, Carola Venturini^{1,4}, Katarzyna Mickiewicz⁵, Neftali Flores-Rodriguez⁶, Jeff Errington⁵, Jonathan R. Iredell^{1,4,7}

- 1. Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- 2. School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, Australia
- 3. The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
- 4. School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- 5. Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- 6. Sydney Microscopy and Microanalysis, Charles Perkins, The University of Sydney, Sydney, New South Wales, Australia
- 7. Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia

Other ways in which L-forms can be generated naturally

0

- Microfluidic channels (constrictions)
- E. coli L-forms are derived after penetrating channels with a width that is smaller than their diameter
- L-form switching appears to be a stress response

Bacterial growth and motility in sub-micron constrictions

Jaan Männik, Rosalie Driessen, Peter Galajda, Juan E. Keymer, and Cees Dekker + See all authors and affiliations

PNAS September 1, 2009 106 (35) 14861-14866; https://doi.org/10.1073/pnas.0907542106

(Männik et al., 2009, PNAS)

Other strains of pathogenic E. coli isolated from <u>other specimen types</u> display L-form switching due to stress from meropenem and lytic phages

E. coli	Specimen	ST (clade)	Antimicrobial resistance genes	Meropenem MIC (µg/ml)		Specific phages			
strain ID				WT	Reverta nt	Eco2	Eco6	Eco11	Eco12
SYD045	Urine	ST1193	bla _{CTX-M-14a} , bla _{TEM-1b} , aac(3)-lld	<0.25	ND				
SYD252	Urine	ST131 (B)	bla _{CTX-M-15} , bla _{TEM-1b} , aac(3)-Ild, dfrA17-aadA5, sul1, mph(A), sul2, strAB, tet(A)	0.031	0.031				
SYD449	Blood culture	ST131 (A)	None	0.031	0.031				
SYD214	Urine	ST648	bla _{TEM-1b} , aac(3)-lle	<0.25	ND				
SYD402	Urine	ST73	blaтем-1ь, sul2	0.031	0.015				
SYD009	Blood culture	ST95	bla _{DHA-1} , qnrB4, dfrA17, sul1, mph(A), sul2, strAB, tet(B),	0.015	0.015				
SYD074	Blood culture	ST58	bla _{TEM-1b} , dfrA5, strAB, sul2, tet(A),	0.015	0.015				
SYD066	Urine	ST405	blactx.m.15, aac(3)-lle, dfrA17-aadA5, sul1, mph(A), tet(B)	<0.25	ND				
SYD259	Urine	ST998	bla _{CTX-M-15} , bla _{TEM-1b} , bla _{OXA-1} , aac(6')-lb-cr, aac(3)-lle, aphA1, dfrA5, dfrA17- aadA5, sul1, mph(A), sul2, floR	0.015	0.015				
SYD001	Urine	ST38	bla _{CTX-M-27} , dfrA17-aadA5, sul1, mph(A), sul2, strAB, tet(A),	0.031	0.031				
SYD421	Urine	ST349	bla _{TEM-1b} , dfrA14, sul2, strAB	0.031	0.031				
JIE4039	Urine	ST963	bla _{CMY-2}	0.031	0.063				
B36	Blood culture	ST131 (C)	blactx-M-15, blatem-1b, blacxA-1, dfrA17-aadA5, sul1, mph(A), sul2, strAB, tet(A),	0.031	0.031				
J53	Stool	ST10	None	<0.25	ND				
WH62	Stool	ST127	None	0.063	0.063				

*MIC=minimal inhibitory concentration; ND=not determine; Coloured cells represent phage activity on CWB lawn: dark green=clear plaques, light green=slightly turbid plaques, yellow=turbid plaques and grey=no activity.

Routine microbiological media is hypotonic and does not support L-form growth

L-forms provide a route for antibiotic evasion

- patient UTI343
- treated with
 phosphomycin
 (donation 6)
- Significant viable bacterial >1 × 10⁵
- UPEC strain ST144

